121 research outputs found

    Pair-copula constructions of multiple dependence

    Get PDF
    Building on the work of Bedford, Cooke and Joe, we show how multivariate data, which exhibit complex patterns of dependence in the tails, can be modelled using a cascade of pair-copulae, acting on two variables at a time. We use the pair-copula decomposition of a general multivariate distribution and propose a method to perform inference. The model construction is hierarchical in nature, the various levels corresponding to the incorporation of more variables in the conditioning sets, using pair-copulae as simple building blocs. Pair-copula decomposed models also represent a very flexible way to construct higher-dimensional coplulae. We apply the methodology to a financial data set. Our approach represents the first step towards developing of an unsupervised algorithm that explores the space of possible pair-copula models, that also can be applied to huge data sets automatically

    Models for construction of multivariate dependence

    Get PDF
    In this article we review models for construction of higher-dimensional dependence that have arisen recent years. A multivariate data set, which exhibit complex patterns of dependence, particularly in the tails, can be modelled using a cascade of lower-dimensional copulae. We examine two such models that differ in their construction of the dependency structure, namely the nested Archimedean constructions and the pair-copula constructions (also referred to as vines). The constructions are compared, and estimation- and simulation techniques are examined. The fit of the two constructions is tested on two different four-dimensional data sets; precipitation values and equity returns, using a state of the art copula goodness-of-fit procedure. The nested Archimedean construction is strongly rejected for both our data sets, while the pair-copula construction provides an appropriate fit. Through VaR calculations, we show that the latter does not overfit data, but works very well even out-of-sample

    Learning Latent Representations of Bank Customers With The Variational Autoencoder

    Get PDF
    Learning data representations that reflect the customers' creditworthiness can improve marketing campaigns, customer relationship management, data and process management or the credit risk assessment in retail banks. In this research, we adopt the Variational Autoencoder (VAE), which has the ability to learn latent representations that contain useful information. We show that it is possible to steer the latent representations in the latent space of the VAE using the Weight of Evidence and forming a specific grouping of the data that reflects the customers' creditworthiness. Our proposed method learns a latent representation of the data, which shows a well-defied clustering structure capturing the customers' creditworthiness. These clusters are well suited for the aforementioned banks' activities. Further, our methodology generalizes to new customers, captures high-dimensional and complex financial data, and scales to large data sets.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0253

    Deep Generative Models for Reject Inference in Credit Scoring

    Get PDF
    Credit scoring models based on accepted applications may be biased and their consequences can have a statistical and economic impact. Reject inference is the process of attempting to infer the creditworthiness status of the rejected applications. In this research, we use deep generative models to develop two new semi-supervised Bayesian models for reject inference in credit scoring, in which we model the data generating process to be dependent on a Gaussian mixture. The goal is to improve the classification accuracy in credit scoring models by adding reject applications. Our proposed models infer the unknown creditworthiness of the rejected applications by exact enumeration of the two possible outcomes of the loan (default or non-default). The efficient stochastic gradient optimization technique used in deep generative models makes our models suitable for large data sets. Finally, the experiments in this research show that our proposed models perform better than classical and alternative machine learning models for reject inference in credit scoring

    Pair-copula constructions of multiple dependence

    Get PDF
    Building on the work of Bedford, Cooke and Joe, we show how multivariate data, which exhibit complex patterns of dependence in the tails, can be modelled using a cascade of pair-copulae, acting on two variables at a time. We use the pair-copula decomposition of a general multivariate distribution and propose a method to perform inference. The model construction is hierarchical in nature, the various levels corresponding to the incorporation of more variables in the conditioning sets, using pair-copulae as simple building blocs. Pair-copula decomposed models also represent a very flexible way to construct higher-dimensional coplulae. We apply the methodology to a financial data set. Our approach represents the first step towards developing of an unsupervised algorithm that explores the space of possible pair-copula models, that also can be applied to huge data sets automatically

    Discriminative Multimodal Learning via Conditional Priors in Generative Models

    Full text link
    Deep generative models with latent variables have been used lately to learn joint representations and generative processes from multi-modal data. These two learning mechanisms can, however, conflict with each other and representations can fail to embed information on the data modalities. This research studies the realistic scenario in which all modalities and class labels are available for model training, but where some modalities and labels required for downstream tasks are missing. We show, in this scenario, that the variational lower bound limits mutual information between joint representations and missing modalities. We, to counteract these problems, introduce a novel conditional multi-modal discriminative model that uses an informative prior distribution and optimizes a likelihood-free objective function that maximizes mutual information between joint representations and missing modalities. Extensive experimentation demonstrates the benefits of our proposed model, empirical results show that our model achieves state-of-the-art results in representative problems such as downstream classification, acoustic inversion, and image and annotation generation
    corecore